Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Indonesian Journal of Chemistry TI -?-Carrageenan/Sodium Alginate: A New Synthesis Route and Rapid Adsorbent for Hydroxychloroquine Drug ; 23(1):219-231 ST -?-Carrageenan/Sodium Alginate: A New Synthesis Route and Rapid Adsorbent for Hydroxychloroquine Drug, 2023.
Article in English | Web of Science | ID: covidwho-2307165

ABSTRACT

In recent years, the huge amounts of chemicals that are used as drugs and their derivatives have been exposed to the environment due to the COVID-19 pandemic. Some of these drugs (i.e. hydroxychloroquine (HCQ)) have a serious risk on aquatic media. In this study, carrageenan/sodium alginate (kappa C/Sa) was investigated as a biopolymer, environmentally friendly, and rapidly adsorbent to eliminate HCQ from its aqueous solution. The biopolymer (kappa C/Sa) was synthesized by free radical polymerization assisted by ultrasound in the presence of acrylic acid as cross-linkage and potassium persulfate as an initiator. The natural kappa C/Sa was characterized by FTIR, XRD, BET, BJH, and SEM techniques. The produced co-polymer had a mesoporous surface with high purity and significant thermal stability. The best parameters were determined to be 0.05 g biopolymer, 200 ppm initial HCQ concentration, salts, and pH = 7. The adsorption mechanism follows a pseudo second-order kinetic model, and the adsorption isotherm follows a Freundlich model, with qe reaching 89.8 mg/g at 500 ppm HCQ. Thermodynamic studies indicated that the adsorption of hydroxychloroquine drugs was an exothermic spontaneous process.

2.
Indonesian Journal of Chemistry ; 23(1):219-231, 2023.
Article in English | Scopus | ID: covidwho-2248651

ABSTRACT

In recent years, the huge amounts of chemicals that are used as drugs and their derivatives have been exposed to the environment due to the COVID-19 pandemic. Some of these drugs (i.e. hydroxychloroquine (HCQ)) have a serious risk on aquatic media. In this study, carrageenan/sodium alginate (κC/Sa) was investigated as a biopolymer, environmentally friendly, and rapidly adsorbent to eliminate HCQ from its aqueous solution. The biopolymer (κC/Sa) was synthesized by free radical polymerization assisted by ultrasound in the presence of acrylic acid as cross-linkage and potassium persulfate as an initiator. The natural κC/Sa was characterized by FTIR, XRD, BET, BJH, and SEM techniques. The produced co-polymer had a mesoporous surface with high purity and significant thermal stability. The best parameters were determined to be 0.05 g biopolymer, 200 ppm initial HCQ concentration, salts, and pH = 7. The adsorption mechanism follows a pseudo second-order kinetic model, and the adsorption isotherm follows a Freundlich model, with qe reaching 89.8 mg/g at 500 ppm HCQ. Thermodynamic studies indicated that the adsorption of hydroxychloroquine drugs was an exothermic spontaneous process. © 2023, Gadjah Mada University. All rights reserved.

3.
Biosensors (Basel) ; 13(3)2023 Mar 13.
Article in English | MEDLINE | ID: covidwho-2288300

ABSTRACT

The COVID-19 pandemic has caused an unprecedented health and economic crisis, highlighting the importance of developing new molecular tools to monitor and detect SARS-CoV-2. Hence, this study proposed to employ the carrageenan extracted from Gigartina skottsbergii algae as a probe for SARS-CoV-2 virus binding capacity and potential use in molecular methods. G. skottsbergii specimens were collected in the Chilean subantarctic ecoregion, and the carrageenan was extracted -using a modified version of Webber's method-, characterized, and quantified. After 24 h of incubation with an inactivated viral suspension, the carrageenan's capacity to bind SARS-CoV-2 was tested. The probe-bound viral RNA was quantified using the reverse transcription and reverse transcription loop-mediated isothermal amplification (RT-LAMP) methods. Our findings showed that carrageenan extraction from seaweed has a similar spectrum to commercial carrageenan, achieving an excellent proportion of binding to SARS-CoV-2, with a yield of 8.3%. Viral RNA was also detected in the RT-LAMP assay. This study shows, for the first time, the binding capacity of carrageenan extracted from G. skottsbergii, which proved to be a low-cost and highly efficient method of binding to SARS-CoV-2 viral particles.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Carrageenan/chemistry , Molecular Probes , Pandemics , Molecular Diagnostic Techniques/methods , RNA, Viral/genetics , Nucleic Acid Amplification Techniques/methods , Sensitivity and Specificity
4.
Viral Infections and Antiviral Therapies ; : 537-566, 2023.
Article in English | ScienceDirect | ID: covidwho-2104203

ABSTRACT

In recent years, the healthcare community has faced challenges with viral infections, which they believe pose a significant threat to humanity. Because of the emergence and reemergence of these viral diseases, including the ongoing COVID-19 pandemic, there is an urgent need for novel drug discovery and potential antiviral therapeutics to combat these situations. Scientists are increasing focusing on marine-derived biomaterials, which have been shown to have a variety of effective antiviral activities, although there is some lag. This chapter highlights some of the studies that have been conducted on the antiviral activities of polysaccharides and antimicrobial peptides derived from marine organisms. It will specifically recall the antiviral activities of peptides and sulfated polysaccharides derived from the marine environment, such as tachyplesin, polyphemusin, chitin, chitosan, carrageenans, alginates, and fucans, among others. Furthermore, recent findings on the anti-SARS-CoV-2 action of some marine polysaccharides are also briefly summarized.

5.
3 Biotech ; 12(7): 154, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1906555

ABSTRACT

Marine resources are today a renewable source of various compounds that are used in numerous industries. In recent years, considerable attention has been focused on diverse algae or their metabolites to develop several novel bioactive substances. Algae derivatives are defined as a food or part of food that has health benefits and prevention or treatment of disease. Algal sulfated polysaccharides have a high potential as a source of functional ingredients with a wide range of applications in the food and pharmaceutical industries. Fucoidan and carrageenan, as two main seaweed sulfated polysaccharides, possess numerous biological properties. These polysaccharides are highly valuable in food and healthy immune system diet and also can be applied in the pharmaceutical field. They have shown antiviral activity against SARS-CoV-2 causes COVID-19 infection by preventing virus entry into the cell or interfering with viral replication. Thus, they may provide some novel ingredients for the production of healthy functional foods, antiviral supplement formulations, or algal-based treatments for viral respiratory diseases, especially anti-COVID-19 and recommend solutions to this global health problem in the future. This article provides a review of recent researches on immune-boosting food ingredients, the antiviral activity of algae bioactive compounds, fucoidan, and carrageenan, in particular against SARS-CoV-2.

6.
Traditional Medicine Research ; 7(3), 2022.
Article in English | EMBASE | ID: covidwho-1822800
7.
Front Med Technol ; 3: 687681, 2021.
Article in English | MEDLINE | ID: covidwho-1636962

ABSTRACT

The COVID-19 global pandemic, as well as the widespread persistence of influenza and the common cold, create the need for new medical devices such as nasal sprays to prevent viral infection and transmission. Carrageenan, a sulfated polysaccharide, has a broad, non-pharmacological antiviral capacity, however it performs poorly in two key areas; spray coverage and mucoadhesion. Therefore gellan, another polysaccharide, was investigated as an excipient to improve these properties. It was found that viscoelastic relaxation time was the key predictor of spray coverage, and by reducing this value from 2.5 to 0.25 s, a mix of gellan and carrageenan gave more than four times the coverage of carrageenan alone (p < 0.0001). Gellan also demonstrated enhanced adhesion to a mucus analog that increased significantly with time (p < 0.0001), suggesting the development of specific gellan-mucin interactions. This property was conferred to carrageenan on mixing the two polymers. Together, this data suggests that gellan is a promising excipient to improve both sprayability and mucoadhesion of carrageenan for use in antiviral nasal sprays.

8.
Biochem Biophys Rep ; 29: 101187, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1568526

ABSTRACT

Iota-carrageenan (IC) nasal spray, a medical device approved for treating respiratory viral infections, has previously been shown to inhibit the ability of a variety of respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), to enter and replicate in the cell by interfering with the virus binding to the cell surface. The aim of this study was to further investigate the efficacy and safety of IC in SARS-CoV-2 infection in advanced in vitro models of the human respiratory epithelium, the primary target and entry port for SARS-CoV-2. We extended the in vitro safety assessment of nebulized IC in a 3-dimensional model of reconstituted human bronchial epithelium, and we demonstrated the efficacy of IC in protecting reconstituted nasal epithelium against viral infection and replication of a patient-derived SARS-CoV-2 strain. The results obtained from these two advanced models of human respiratory tract epithelia confirm previous findings from in vitro SARS-CoV-2 infection assays and demonstrate that topically applied IC can effectively prevent SARS-CoV-2 infection and replication. Moreover, the absence of toxicity and functional and structural impairment of the mucociliary epithelium demonstrates that the nebulized IC is well tolerated.

9.
IOP Conference Series. Earth and Environmental Science ; 913(1), 2021.
Article in English | ProQuest Central | ID: covidwho-1556726

ABSTRACT

In some cases, the immune system in COVID-19 patients leads to the release of excess cytokine production (cytokine storm), which will potentially develop into pneumonia. Interleukin 6 (IL-6) plays the role of pro-inflammatory cytokine, it is a receptor mediated signalling system. Macroalgae is well known as a source of valuable bioactive substances with potential biological activities. Among them is the sulphated polysaccharide lambda-carrageenan λ-CGN which has been reported as an anti-inflammatory agent. However, its mechanism of action against IL-6 production is currently unknown. This study aims to predict potential molecular mechanisms of λ-CGN chemical compound against IL-6 expression through in silico study. Chemical compound of λ-CGN and target protein in this study were obtained from the pubchem and protein data bank (PDB). The molecular docking prediction was conducted with PyRx software, the result is λ-CGN compound showing strong binding energy to bind target protein IL-6 receptor with the value of -5.9 kcal/mol. Based on the results of in silico study, the sulphated polysaccharide λ-CGN potentially inhibits IL-6R expression by binding ligand pocket with six conventional hydrogen bonds (amino acid residus: His256, His 257, Trp 219, Arg 231, and Asp 221) and two carbon hydrogen bonds (amino acid residus: THR 218 and GLN 220). Binding with these amino acid residues potentially contributes to IL-6 receptor structural change which could result in functional change. Hence, further studies related to in vitro and in vivo investigations would be interesting to further understand the inhibitory mechanism of λ-CGN against IL-6.

10.
Int J Mol Sci ; 22(24)2021 Dec 08.
Article in English | MEDLINE | ID: covidwho-1554850

ABSTRACT

The COVID-19 pandemic continues to spread around the world and remains a major public health threat. Vaccine inefficiency, vaccination breakthroughs and lack of supply, especially in developing countries, as well as the fact that a non-negligible part of the population either refuse vaccination or cannot be vaccinated due to age, pre-existing illness or non-response to existing vaccines intensify this issue. This might also contribute to the emergence of new variants, being more efficiently transmitted, more virulent and more capable of escaping naturally acquired and vaccine-induced immunity. Hence, the need of effective and viable prevention options to reduce viral transmission is of outmost importance. In this study, we investigated the antiviral effect of iota-, lambda- and kappa-carrageenan, sulfated polysaccharides extracted from red seaweed, on SARS-CoV-2 Wuhan type and the spreading variants of concern (VOCs) Alpha, Beta, Gamma and Delta. Carrageenans as part of broadly used nasal and mouth sprays as well as lozenges have the potential of first line defense to inhibit the infection and transmission of SARS-CoV-2. Here, we demonstrate by using a SARS-CoV-2 spike pseudotyped lentivirus particles (SSPL) system and patient-isolated SARS-CoV-2 VOCs to infect transgenic A549ACE2/TMPRSS2 and Calu-3 human lung cells that all three carrageenan types exert antiviral activity. Iota-carrageenan exhibits antiviral activity with comparable IC50 values against the SARS-CoV-2 Wuhan type and the VOCs. Altogether, these results indicate that iota-carrageenan might be effective for prophylaxis and treatment of SARS-CoV-2 infections independent of the present and potentially future variants.


Subject(s)
COVID-19 Drug Treatment , COVID-19/virology , Carrageenan/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , Antiviral Agents/pharmacology , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Vaccines/pharmacology , Chlorocebus aethiops , HEK293 Cells , Humans , Pandemics , Polysaccharides/pharmacology , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , Vero Cells
11.
Int J Gen Med ; 14: 5241-5249, 2021.
Article in English | MEDLINE | ID: covidwho-1413171

ABSTRACT

PURPOSE: The aim of this study was to investigate whether sucking of an iota-carrageenan containing lozenge releases sufficient iota-carrageenan into the saliva of healthy subjects to neutralize representatives of the most common respiratory virus families causing common cold and SARS-CoV-2. PATIENTS AND METHODS: In this monocentric, open label, prospective clinical trial, 31 healthy subjects were included to suck a commercially available iota-carrageenan containing lozenge. Saliva samples from 27 subjects were used for ex vivo efficacy analysis. The study's primary objective was to assess if the mean iota-carrageenan concentration of the saliva samples exceeded 5 µg/mL, which is the concentration known to reduce replication of human rhinovirus (hRV) 1a and 8 by 90%. The iota-carrageenan concentration of the saliva samples was analyzed by UV-Vis spectroscopy. The antiviral effectiveness of the individual saliva samples was determined in vitro against a panel of respiratory viruses including hRV1a, hRV8, human coronavirus OC43, influenza virus A H1N1pdm09, coxsackievirus A10, parainfluenza virus 3 and SARS-CoV-2 using standard virological assays. RESULTS: The mean iota-carrageenan concentration detected in the saliva exceeds the concentration needed to inhibit 90% of hRV1a and hRV8 replication by 134-fold (95% CI 116.3-160.8-fold; p < 0.001). Thus, the study met the primary endpoint. Furthermore, the iota-carrageenan saliva concentration was 60 to 30,351-fold higher than needed to reduce viral replication/binding of all tested viruses by at least 90% (p < 0.001). The effect was most pronounced in hCoV OC43; in case of SARS-CoV-2, the IC90 was exceeded by 121-fold (p < 0.001). CONCLUSION: Sucking an iota-carrageenan containing lozenge releases sufficient iota-carrageenan to neutralize and inactivate the most abundant respiratory viruses as well as pandemic SARS-CoV-2. The lozenges are therefore an appropriate measure to reduce the viral load at the site of infection, hereby presumably limiting transmission within a population as well as translocation to the lower respiratory tract. TRIAL REGISTRATION: NCT04533906.

12.
Future Microbiol ; 16: 119-130, 2021 01.
Article in English | MEDLINE | ID: covidwho-1389070

ABSTRACT

A review of nasal sprays and gargles with antiviral properties suggests that a number of commonly used antiseptics including povidone-iodine, Listerine®, iota-carrageenan and chlorhexidine should be studied in clinical trials to mitigate both the progression and transmission of SARS-CoV-2. Several of these antiseptics have demonstrated the ability to cut the viral load of SARS-CoV-2 by 3-4 log10 in 15-30 s in vitro. In addition, hypertonic saline targets viral replication by increasing hypochlorous acid inside the cell. A number of clinical trials are in process to study these interventions both for prevention of transmission, prophylaxis after exposure, and to diminish progression by reduction of viral load in the early stages of infection.


Subject(s)
Anti-Infective Agents, Local/administration & dosage , Anti-Infective Agents, Local/therapeutic use , COVID-19/prevention & control , SARS-CoV-2/drug effects , COVID-19/transmission , Carrageenan/therapeutic use , Chlorhexidine/therapeutic use , Drug Combinations , Hydrogen Peroxide/therapeutic use , Nasal Sprays , Oils, Volatile/therapeutic use , Povidone-Iodine/therapeutic use , Salicylates/therapeutic use , Terpenes/therapeutic use , Viral Load/drug effects
13.
Clin Epidemiol Glob Health ; 12: 100826, 2021.
Article in English | MEDLINE | ID: covidwho-1293636

ABSTRACT

OBJECTIVE: There is no specific antiviral treatment available for coronavirus disease 2019 (COVID-19). Among the possible natural constituents is carrageenan, a polymer derived from marine algae that possesses a variety of antiviral properties. The purpose of this review was to summarize the evidence supporting carrageenan subtypes' antiviral activity against the emerging severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19. METHODS: PubMed/MEDLINE and Google Scholar searches were conducted for publications using the terms 'carrageenan', 'iota carrageenan', 'kappa carrageenan', lambda-carrageenan', 'coronavirus', 'common cold', 'rhinovirus', and 'SARS-CoV-2' search was also done in grey literature to increase our understanding. A search for the word "carrageenan" was also carried out. Most of the publications were discussed in narrative. RESULTS: Carrageenan has been shown to have potent antiviral activity against both coronaviruses (coronavirus NL63, SARS-CoV-2) and non-coronaviruses such as dengue virus, herpes simplex virus, cytomegalovirus, vaccinia virus, vesicular stomatitis virus, sindbis virus, human immunodeficiency virus, influenza virus, human papillomavirus, rabies virus, junin virus, tacaribe virus, African swine fever, bovine herpes virus, suid herpes virus, and rhinovirus. No in vivo study has been conducted using carrageenan as an anti-SARS-CoV-2 agent. The majority of the in vivo research was done on influenza, a respiratory virus that causes common cold together with coronavirus. Thus, various clinical trials were conducted to determine the transferability of these in vitro data to clinical effectiveness against SARS-CoV-2. When combined with oral ivermectin, nasally administered iota-carrageenan improved outcome in COVID-19 patients. It is still being tested in clinics for single-dose administration. CONCLUSION: Though the carrageenan exhibited potent antiviral activity against SARS-CoV-2 and was used to treat COVID-19 under emergency protocol in conjunction with oral medications such as ivermectin, there is no solid evidence from clinical trials to support its efficacy. Thus, clinical trials are required to assess its efficacy for COVID-19 treatment prior to broad application.

14.
Pharmacol Res Perspect ; 9(4): e00810, 2021 08.
Article in English | MEDLINE | ID: covidwho-1269137

ABSTRACT

In this individual patient data meta-analysis we examined datasets of two randomized placebo-controlled trials which investigated the effect of nasal carrageenan separately on children and adults. In both trials, iota-carrageenan was administered nasally three times per day for 7 days for patients with the common cold and follow-up lasted for 21 days. We used Cox regression to estimate the effect of carrageenan on recovery rate. We also used quantile regression to calculate the effect of carrageenan on colds of differing lengths. Nasal carrageenan increased the recovery rate from all colds by 54% (95% CI 15%-105%; p = .003). The increase in recovery rate was 139% for coronavirus infections, 119% for influenza A infections, and 70% for rhinovirus infections. The mean duration of all colds in the placebo groups of the first four quintiles were 4.0, 6.8, 8.8, and 13.7 days, respectively. The fifth quintile contained patients with censored data. The 13.7-day colds were shortened by 3.8 days (28% reduction), and 8.8-day colds by 1.3 days (15% reduction). Carrageenan had no meaningful effect on shorter colds. In the placebo group, 21 patients had colds lasting over 20 days, compared with six patients in the carrageenan group, which corresponds to a 71% (p = .003) reduction in the risk of longer colds. Given that carrageenan has an effect on diverse virus groups, and effects at the clinical level on two old coronaviruses, it seems plausible that carrageenan may have an effect on COVID-19. Further research on nasal iota-carrageenan is warranted.


Subject(s)
Antiviral Agents/administration & dosage , Carrageenan/administration & dosage , Common Cold/virology , Coronavirus Infections/drug therapy , Influenza, Human/drug therapy , Picornaviridae Infections/drug therapy , Administration, Intranasal , Adult , Antiviral Agents/therapeutic use , Carrageenan/pharmacology , Child, Preschool , Common Cold/drug therapy , Female , Humans , Male , Nasal Sprays , Randomized Controlled Trials as Topic , Regression Analysis , Survival Analysis , Time Factors , Treatment Outcome
15.
Adv Mater ; 33(26): e2008304, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1248674

ABSTRACT

Airborne pathogens pose high risks in terms of both contraction and transmission within the respiratory pathways, particularly the nasal region. However, there is little in the way of adequate intervention that can protect an individual or prevent further spread. This study reports on a nasal formulation with the capacity to combat such challenges, focusing on severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Formulation of a polysaccharide-based spray, known for its mucoadhesive properties, is undertaken and it is characterized for its mechanical, spray distribution, and antiviral properties. The ability to engineer key mechanical characteristics such as dynamic yield stresses and high coverage is shown, through systematic understanding of the composite mixture containing both gellan and λ-carrageenan. Furthermore, the spray systems demonstrate highly potent capacities to prevent SARS-CoV-2 infection in Vero cells, resulting in complete inhibition when either treating, the cells, or the virus, prior to challenging for infection. From this data, a mechanism for both prophylaxis and prevention is proposed; where entrapment within a polymeric coating sterically blocks virus uptake into the cells, inactivating the virus, and allowing clearance within the viscous medium. As such, a fully preventative spray is formulated, targeted at protecting the lining of the upper respiratory pathways against SARS-CoV-2.


Subject(s)
Drug Compounding , Nasal Sprays , Polymers/chemistry , SARS-CoV-2/physiology , Animals , COVID-19/pathology , COVID-19/virology , Carrageenan/chemistry , Chlorocebus aethiops , Humans , Polymers/pharmacology , Polysaccharides, Bacterial/chemistry , SARS-CoV-2/isolation & purification , Vero Cells , Virus Internalization/drug effects
16.
Food Chem ; 359: 129871, 2021 Oct 15.
Article in English | MEDLINE | ID: covidwho-1193317

ABSTRACT

There has been keen interest in developing biodegradable food packaging materials using polysaccharides. Plant polyphenols are natural antioxidants with many health effects. Different types of plant extracts rich in polyphenols have been formulated into polysaccharide based films and coatings for food packaging. The packaging increases the shelf life of food products by decreasing the quality loss due to oxidation and microbiological growth. The release of polyphenols from the films is modulated. Polysaccharide films incorporated with certain types of polyphenols can be used to indicate the freshness of animal based products. To formulate films with desirable mechanical and barrier properties, addition levels and types of plant extracts, plasticisers and composite polysaccharide materials used should be optimized. The potential of polysaccharide based films with added polyphenols to stop the SARS-CoV-2 transmission through food supply chain is discussed. Polysaccharide based films fortified with polyphenol extracts are multifunctional with potential for active and intelligent packaging.


Subject(s)
Antioxidants , Food Packaging , Polyphenols/chemistry , Polysaccharides/chemistry , Oxidation-Reduction , Plant Extracts/chemistry
17.
Infect Disord Drug Targets ; 21(8): e160921191568, 2021.
Article in English | MEDLINE | ID: covidwho-1090478

ABSTRACT

Considering the importance of COVID-19 disease pandemic, emerged by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in line with other studies to find appropriate prevention or treatment methods for this virus infection, our study objective was proposing the use of natural derived ingredients as an approach for COVID-19 disease control. Here we reviewed previous studies on natural derived nasal sprays andfound that some known natural derived ingredients have antiviral properties, so their topical use as a nasalspray is effective in reducing the symptoms of respiratory infections. Moreover, such nasal sprays also have thepotential of decreasing viral load, including titer of coronaviruses, in the nasal cavity. It seems that the use ofcarrageenan or other herbal ingredients in the nasal spray may block the SARS-CoV-2 virus from entering thelung cells of an affected person and can also prevent virus transmission to other susceptible persons. Further,noticing what we know about the novel 2019 coronavirus so far, we suggested carrageenan that has an unspecific physical antiviral activity and some other natural derived ingredients, as a choice in coping with SARS-CoV-2 virus infection.


Subject(s)
COVID-19 , Nasal Sprays , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Pandemics , SARS-CoV-2
18.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L750-L756, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1076012

ABSTRACT

Pharmaceutical interventions are urgently needed to prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and transmission. As SARS-CoV-2 infects and spreads via the nasopharyngeal airways, we analyzed the antiviral effect of selected nasal and oral sprays on virus infection in vitro. Two nose sprays showed virucidal activity but were cytotoxic precluding further analysis in cell culture. One nasal and one mouth spray suppressed SARS-CoV-2 infection of TMPRSS2-expressing Vero E6 cells and primary differentiated human airway epithelial cultures. The antiviral activity in both sprays could be attributed to polyanionic ι- and κ-carrageenans. Thus, application of carrageenan-containing nasal and mouth sprays may reduce the risk of acquiring SARS-CoV-2 infection and may limit viral spread, warranting further clinical evaluation.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19/prevention & control , Carrageenan/pharmacology , SARS-CoV-2/drug effects , Adult , Animals , Cell Line , Chlorocebus aethiops , Epithelial Cells/drug effects , Epithelial Cells/virology , Female , Humans , Male , Middle Aged , Nasal Sprays , Oral Sprays , Serine Endopeptidases/metabolism , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL